Wednesday, September 2, 2020

5 Hal penting ketika mengirim email ke Dosen

Meskipun telah banyak artikel, postingan Instagram ataupun video di Tiktok yang membahas etika atau aturan dalam mengirimkan email ke dosen, namun ternyata masih banyak mahasiswa yang belum tau atau belum paham hal penting ini. Terbukti masih ada beberapa email yang masuk ke inbox saya tanpa memperhatikan hal-hal penting tersebut.

Contoh email yang kurang tepat

Untuk itu saya ingin membagikan 5 hal penting berikut ini yang perlu anda perhatikan jika ingin berkomunikasi dengan dosen melalui email:

1. Tuliskan Subject

Subject ini sangat penting dalam komunikasi email, karena penerima akan mengetahui secara cepat maksud dari si pengirim email tersebut sebelum membukanya dan membaca secara detail. Kesalahan fatal jika anda mengirimkan email tanpa menuliskan subject/topik, bahkan beberapa email filter akan menkategorikan email anda masuk ke folder spam.

Tuliskan subject email dengan singkat dan jelas. Misal anda akan mengumpulkan tugas melalui email jangan hanya menuliskan "Tugas" lebih baik diganti dengan "Tugas matakuliah ABC", atau saat anda ingin melakukan konfirmasi nilai ujian jangan menuliskan "Nilai" lebih baik ditulis "Konfirmasi nilai ujian akhir matakuliah XYZ". Hal ini akan memudahkan dosen anda untuk memahami maksud dari email yang anda kirimkan. 

2. Kata pembuka

Gunakan kata pembuka yang sopan dan baik, misalnya: Assalamualaikum pak, Selamat pagi bu, Dear pak XYZ, dll. Jangan gunakan bahasa percakapan sehari-hari dalam menuliskan kata pembuka ini, contohnya berikut ini yang harus anda hindari: Halo dab, Hi bro, Halo pak, dll. 

3. Identitas anda

Anda harus pahami bahwa dosen tidak bisa menghapal satu-persatu nama mahasiswa yang begitu banyak, apalagi hanya tulisan di email, maka identitas ini sangat penting ketika anda berkomunikasi dengan email. Perkenalkan diri anda setelah menuliskan salam pembuka, sebutkan nama, nomer identitas dan hubungan anda dengan dosen tersebut. Misalkan: Nama saya ABC dengan nim 123, saya adalah mahasiswa bapak di kelas XX pada matakuliah ABC. 

4. Isi email

Tuliskan isi email dengan jelas sesuai maksud anda. Gunakan bahasa resmi dan sopan, hindari penggunaan bahasa sehari-hari dan jangan menyingkat kata-kata. Gunakan kata ganti Saya, dan jangan menggunakan kata ganti aku, akuh, gue, atau yang sejenisnya. 

Hal lain yang perlu anda perhatikan adalah jangan memerintah "dosen", misalkan: tolong diperiksa, tolong disetujui, tolong dibalas, dll. Kalaupun anda memerlukan dosen untuk segera melakukan sesuatu hal, maka sampaikan secara tidak langsung, misalkan: Jika ada ada suatu hal yang perlu diperbaiki, mohon kiranya bapak memberitahu saya. Hal ini lebih nyaman bagi dosen untuk melakukan sesuatu hal untuk anda.

5. Pahami kesibukan dosen

Anda perlu pahami bahwa dosen tidak menerima email dari anda saja, dan berbagai macam kesibukan yang lain. Anda jangan terlalu berharap email akan dibalas dengan segera, kalaupun dosen segera membalas dengan cepat maka itulah keberuntungan anda. Waktu normal bagi dosen untuk membalas email adalah 3-4 hari kerja, jika lebih dari 5 hari anda belum mendapatkan balasan, anda bisa mengingatkan kembali dengan melakukan reply pada email sebelumnya.

Hal penting diatas tidak hanya dilakukan dalam mengirimkan email ke dosen, tetapi anda juga perlu perhatikan ketika mengirimkan email untuk lamaran pekerjaan, berkomunikasi dengan atasan ataupun komunikasi dengan rekan kerja.

Beberapa tulisan diambil dari artikel:


Friday, August 7, 2020

Membuat Github profile README

Ketika sedang mencari inspirasi atau tutorial code di Github, saya sering melihat beberapa profile-profile di halaman utama Github yang menarik, seperti:

Untuk membuat tampilan profile seperti beberapa akun diatas, bisa kita lakukan dengan membuat repository baru dengan nama sama seperti username kita di Github. Misalkan username saya adalah ariflaksito, maka saya akan buat repository baru dengan nama ariflaksito, kemudian check kolom [ ] "Initialize this repository with a README" supaya otomatis akan tercreate template untuk profile kita. Dan satu lagi, pastikan repository anda mempunyai akses public bukan private.

Special repository message dari Github

Selanjutnya silahkan berkreasi untuk memperindah profile anda, siapa tau yang berkunjung ke repository anda untuk explore kode-kode jadi lebih betaah 😉

Untuk menuliskan beberapa text formating di Github menggunakan markdown khusus, bisa dilihat panduannya berikut ini: Github Flavored Markdown. Sedangkan untuk beberapa icon/emoji yang bisa digunakan bisa di cek juga disini: Github markdown Emoji.

Saya sendiri menggunakan badge info dari Pufler Git-badges dan menampilkan statistik dari Github Readme Stats.

Seperti ini tampilan profile saya di Github

Wassalam, semoga bermanfaat 🙏

Wednesday, July 22, 2020

Belajar Data Science dimana ya sebaiknya?

Menjawab pertanyaan dari judul diatas secara sedarhana yaitu kuliah aja di kampus dimana terdapat prodi/jurusan computer science, informatika, atau bidang-bidang komputer. Ternyata kenyataannya tidak semua prodi/jurusan komputer tersebut mengajarkan data science loh. Nah, sebaiknya gimana donk??

Data Science Diagram
source: https://intellipaat.com/blog/what-is-data-science/

Tren pekerjaan yang banyak diminati oleh para lulusan bidang komputer saat ini yaitu data science, dimana anda bisa cek sendiri rentang gaji untuk pekerjaan ini di google degh. Bidang ilmu data science ini merupakan lintas ilmu dari programming, database dan statistika seperti pada ilustrasi gambar diatas. Selain itu ilmu machine learning juga diperlukan pada pekerjaan ini.

Sayangnya tidak semua kampus di prodi komputer mengajarkan ilmu ini, seperti di prodi kampus tempat saya mengajar hanya 2 sks saja untuk belajar data mining, lebih baik dari pada tidak ada sama sekali khan. Selanjutnya bagaimana cara nya supaya kita bisa mendapat ilmu tentang data science tersebut?

Investasi waktu, pikiran dan uang
Disini uang saya tuliskan di bagian akhir, karena yang paling penting adalah waktu dan fokus pada pikiran. Bisa juga koq kita tanpa uang mempelajari ilmu tersebut.

Nah.. dimasa pandemi ini sangat banyak online course atau webinar yang gratis atau berbayar yg bisa kita ikuti. Pada artikel kali ini saya akan share 2 course online yang bagus untuk anda ikuti dalam mempelajari data science ini, dimana saya sendiri sudah mencoba nya, yaitu: Dqlab dan Sanbercode

DQLab

Saya sudah join ecourse yang beralamat di https://dqlab.id/ ini sejak agustus 2019, dan materi yang dipelajari cukup lengkap, yaitu SQL for data science, R for data science dan Python for data science. Content materi sangat beragam, dari level pemula sampai level lanjut/advance. Selain itu di paltform ini menggunakan live code yang sudah support ke-3 bahasa tersebut, jadi kita tidak perlu menyiapkan environment di local PC/Laptop untuk belajar data science, cukup browser dan koneksi internet saja.

Menurut saya ecourse di DQLab menyiapkan membernya untuk menjadi data engineering, data analyst ataupun data science (perbedaan ke-3 bidang ini saya kurang paham detail, bisa explore sendiri ya), disini materi-materinya fokus di pengolahan data, transformasi, data analisis, cleaning, wrangling, dsb.

DQLab juga menyediakan beberapa challenge yang dipandu oleh beberapa pakar dari dunia industri, seperti traveloka, tokopedia, efishery, xeratic, dll. Challenge ini seperti mini project yang bisa kita kerjakan dengan range waktu tertentu, dimana kasusnya memang sesuai dengan dunia industri, jadi jika kita mengikutinya akan punya pengalaman yang sangat berharga.

Untuk materi-materi tentang modeling machine learning atau data mining ada juga di DQLab pada project challenge yang biasanya setiap bulan 1x atau 2x akan diinfokan di dashboard kita.

Modul challenge Dqlab
Modul challenge DQLab

Beberapa modul dasar di DQLab di sediakan gratis, selanjutnya kita bisa berlangganan dengan harga yang cukup terjangkau. Saat artikel ini diposting terdapat promo untuk berlangganan seharga Rp. 179.400,- untuk 6 bulan. Cek berkala web dan IG Dqlab yang biasanya share informasi promo untuk berlangganan.

Dengan jumlah modul saat ini lebih dari 30 dan akan terus bertambah lagi dengan materi-materi terupdate, saya rasa biaya berlangganan sebesar angka diatas layak dengan apa yang nantinya akan kita dapatkan.

Beberapa modul juga menawarkan reward yaitu extend berlangganan 1 bulan jika kita bisa menyelesaikannya dengan batas waktu yang ditentukan. Saya sendiri pernah mendapatkan reward challenge ini dan juga reward 6 bulan gratis ketika tim DQLab meminta tetimoni.

Challenge dengan Reward di DQLab
Challenge dengan Reward di DQLab

Sanbercode

Sanbercode merupakan ecourse kedua yang akan saya bahas disini, dimana terdapat juga kelas di bidang programing dan design yang ditawarkan selain kelas data science.  Beralamatkan di https://sanbercode.com/, saya mengikuti kegiatan bootcamp dari sanbercode untuk kelas python data science pada bulan Juni 2020 dan sangat puas dengan metode yang diterapkan di event ini.

Event bootcamp tersebut bernama "Bootcamp online 2020 by SanberCode.. From Zero to Hero". Program ini intensif selama 1 bulan atau 4 pekan yang diselenggarakan setiap bulan (kegiatan bisa berubah sewaktu-waktu, cek IG Sanbercode untuk info lebih lanjut). 

Terdapat 2 level pada bootcamp ini yaitu kelas dasar dan kelas lanjutan. Kelas dasar ini gratis dengan syarat yaitu membayar uang komitmen Rp 200,000 dan mendapatkan score bootcamp 80 atau lebih. Saya mengikuti kelas dasar dan Alhamdulillah mendapatkan score 88 dan uang kembali masuk rekening 😄.

Informasi bootcamp bulan Juli 2020


Kurikulum dari bootcamp tersebut kurang lebih seperti berikut ini:
Minggu 1
  • Hello Python
  • Functions, Method and Getting Help
  • Logic Control Flow and Loop
  • Python List dan Dictionary
  • Statistika Deskriptif Untuk Data Science
Minggu 2
  • Pandas Introduction
  • Akses/Indexing dan Transformasi Data
  • Reshaping Data
  • Grouping Data
  • Merging DataFrame
Minggu 3
  • Pengenalan Matplotlib
  • Custom Visualisasi
  • Multiple Plots
  • Perbandingan Kuantitatif
  • Seaborn dan Altair
Minggu 4
  • Pengenalan Machine Learning
  • Algoritma KNN dan Model Regresi Linear
  • Evaluasi Performa dan Memilih Model
  • Preprocessing Data
Setiap materi tersebut akan ada tugas harian yang dikerjakan pada jupyter notebook atau google colab dan disubmit untuk dilakukan penilaian. Selanjutnya pada akhir pekan (hari sabtu) teradapat quiz sampai minggu ke-3 dan minggu terakhir akan ada final project. Dan untuk final project ini akan dibuka kaggle competition dimana kita disediakan data untuk diolah dan kemudian dilakukan prediksi dengan akurasi terbaik sebagai rangking dari beberapa peserta bootcamp.

Dengan cara pembelajaran intensif seperti ini saya rasa pemahaman materi yang akan didapatkan akan lebih cepat karena kita akan dipakasa fokus selama 1 bulan penuh. 

Jika anda ingin mendapatkan file-file tugas dan quiz dari sanbercode yang pernah saya kerjakan sebelumnya bisa tuliskan email di komentar ya, inshaAllah akan saya kirimkan melalui email tersebut.

Kesimpulan

Dari kedua ecourse yang saya bahas tersebut, kesimpulan menurut saya yaitu:
1) DQLab
- Kasus-kasus di bidang industri terkini
- Bisa mempelajari 3 bahasa penting di data science(R, python, SQL)
- Materi sangat banyak dan terus bertambah, bisa dipelajari sesuai kebutuhan

2) Sanbercode
- Waktu singkat hanya 4 minggu
- Sesuai bagi pemula untuk belajar cepat
- Gratis dengan syarat

Semoga bermanfaat yaa, selamat belajar data science!


Friday, March 13, 2020

Membuat Code Highlight di Word

Bagi beberapa mahasiswa tingkat akhir yang mengambil Skripsi/TA, khususnya di bidang ilmu Computer Science, Informatika, Sistem Informasi, dkk, masalah formating dan tata letak penulisan di aplikasi pengolah kata(Word processing) dapat menaikan level stress disaat si dosen pembimbing meminta menuliskan code-code secara rapi seperti pada Code editor.

planetb.ca ~ syntax-highlight-word
Kali ini saya akan share salah satu tools yang membuat hidup para pejuang-pejuang Skripsi/TA menjadi lebih indah tanpa harus berkutat dengan masalah formating code di Word.   

Saya biasa menggunakan tools online yang dibuat oleh om Jamie di alamat http://planetb.ca/syntax-highlight-word. Cara penggunaanya cukup mudah, tinggal copy khan saja baris code ke dalam form yang tersedia, kemudian pilih jenis bahasa pemrograman dan klik tombol Show Highlighted untuk mendapatkan hasilnya.

Tampilan tools online untuk code highlight
Selanjutnya dari tampilan highlight yang ada di browser "Select All" atau (Ctrl+A), kemudian copy dan paste di Word, naaah... sekarang sudah tampil rapi khan code-code anda di Word.

Tampilan saat di paste ke Word
Silahkan bisa dishare jika artikel ini anda rasa bermanfaat dan dapat membantu para pejuang Skripsi/TA/Thesis.






Wednesday, March 4, 2020

Mengenal Sistem Rekomendasi


Artikel kali ini berkaitan dengan posting saya sebelumnya, saat itu saya tiba-tiba mendapatkan video rekomendasi dari youtube yaitu "[GUIDE] Pebble Screen Tearing Fix". Padahal ketika itu saya sedang exploring video-video smartwatch... Naah kebetulan sekali muncul video tersebut.

Yang jadi pertanyaan adalah.., koq bisa ya Youtube tau apa yang saya butuhkan, atau apa yang bermanfaat buat saya. Teknik ini lah yang disebut dengan Recommendation System atau Sistem Rekomendasi, dimana pengguna akan disuguhkan informasi yang berkaitan dengan item atau karakteristik pengguna tersebut. Menurut saya faktor kebetulan atau Serendipity pada teknik ini sangat kereen, dimana pengguna di tawarkan suatu item/produk yang tak terduga.

Awal mula sistem rekomendasi


Berdasar artikel tahun 1995 tentang social information filtering, saat itu telah ada penelitian di bidang rekomendasi pada database musik yang bernama Ringo, dimana telah dilakukan teknik personalized recommendations. Setelah era berkembangnya internet dan maraknya e-commerce, search engine,  social media dan teknologi berbasis web lainnya, beberapa teknik pada sistem rekomendasi banyak bermuculan untuk menghasilkan item rekomendasi yang lebih baik.

Contoh penggunaan sistem rekomendasi

Peran sistem rekomendasi menjadi penting seiring dengan pertumbuhan data di internet yang sangat pesat dan besar. Dengan meledaknya data-data tersebut, filtering/penyaringan informasi yang berguna/bermanfaat secara personal menjadi bagian yang penting. Disinilah peran sistem rekomendasi dalam melakukan filtering untuk menghasilkan rekomendasi yang baik.

Beberapa perusahaan e-commerce menggunakan sistem rekomendasi untuk menunjang bisnis mereka, seperti: Netflix, Amazon, YouTube, Facebook, Google, MovieLens, Last.fm, Alibaba, eBay, dll.  Dari sejumlah artikel menyebutkan tujuan dari implementasi sistem rekomendasi ini adalah menampilkan list item/produk yang relevan, terbarukan/novelty, kebetulan/serendipity dan beragam/diversity.

MovieLens merupakan salah satu gudang data yang menyediakan data movie, users dan ratings dalam jumlah besar yang sering digunakan oleh banyak peneliti untuk pengujian performa atau membentuk model baru dalam sistem rekomendasi.

Dashboard MovieLens setelah user login
Beberapa sistem rekomendasi pada aplikasi Iflix, Blibli, GoFood dan GrabFood yang memeberikan rekomendasi terkait preference dari pengguna atau item/produk.

Rekomendasi dari iflix beberapa film kartun 😆

Di Blibli saya direkomendasikan membeli Sneakers & Tab ✌😁


Di GrabFood saya disarankan membeli dari resto-resto tersebut

Umumnya terdapat dua metode dalam membangun sistem rekomendasi, yaitu: content-based filtering(CB) dan collaborative filtering(CF), kurang lebih berikut ini detailnya.. 

1. Content-based filtering(CB)

Metode ini memberikan rekomendasi berdasarkan data deskripsi item/produk yang tersedia. Sistem akan mencari persamaan produk berdasarkan deskripsi yang ada. Preferensi pengguna dalam melakukan interaksi terhadap produk akan direkam dan produk dengan kemiripan tertentu akan direkomendasikan kepada pengguna tersebut. Kurang lebih ilustrasi teknik ini seperti pada gambar berikut:

Metode content-based filtering
Pada metode CB ini terdapat beberapa keunggulan, yaitu: 
  • Pengguna akan mendapatkan rekomendasi terhadap produk yang disukainya. 
  • Jika terdapat produk baru akan dengan mudah direkomendasikan jika sesuai dengan karakter produk sejenis. 
Meski demikian terdapat juga beberapa kelemahan pada metode ini: 
  • Tidak bisa memunculkan fitur serendipity, karena jenis produk yang berbeda. 
  • Ekstraksi/pengambilan informasi tipe data video, audio, image sulit dilakukan, karena membutuhkan algoritma yang rumit & kompleks. 
  • Perusahaan bisnis e-commerce tidak dapat ekspansi penjualan produknya, karena tipe produk berbeda tidak muncul sebagai rekomendasi ke pengguna.

2. Collaborative filtering(CF)

Pada CF, sistem memberikan rekomendasi berdasarkan pada karakteristik dari pengguna dengan pengguna yang lain. Oleh karena itu, data history transaksi atau rating dari pengguna menjadi komponen penting dalam metode ini. Misalkan pengguna A membeli kopi, kentang goreng dan telur mata sapi sedangkan pengguna B membeli kopi dan kentang goreng. Maka kemungkinan besar pengguna B juga akan membeli telur mata sapi, karena berdasarkan karakteristik antar pengguna terdapat kecocokan. Konsep inilah yang digunakan oleh metode CF dalam sistem rekomendasi.  Berikut ilustrasi dari metode CF:

Metode collaborative filtering

Di metode CF ini dapat mengatasi kelemahan pada metode CB, yaitu serendipity, dimana pengguna akan merasa surprise mendapatkan rekomendasi produk-produk yang tidak mereka bayangkan sebelumnya. Tetapi di metode CF sistem akan menghasilkan rekomendasi yang baik berdasarkan data rating dari pengguna, kondisi jarangnya data-data tersebut menyebabkan sistem rekomendasi berjalan tidak maksimal, atau istilahnya disebut sparse data.

Kesimpulan

Implementasinya kedua metode dalam sistem rekomendasi tersebut digunakan sesuai kebutuhan, misalkan pada bisnis produk yang sejenis bisa menggunakan metode CB, sedangkan untuk produk-produk beragam, metode CF bisa dipilih. Algoritma pada metode CB sebagian besar menggunakan KNN atau teknik searching dan matching, sedangkan di CF lebih beragam lagi algoritma yang digunakan, seperti: neural network atau matrix factorization.

Gabungan metode keduanya, atau biasa disebut dengan metode Hybrid telah banyak dikembangkan juga untuk menghasilkan rekomendasi yang lebih baik. Trend penelitian saat ini banyak ke arah prediksi matrix data untuk mengatasi kendala sparse data di CF atau pengembangan metode hybrid  di sistem rekomendasi dengan berbagai macam teknik.

Bagi mahasiswa yang tertarik mengambil tema penelitian ini, bisa kontak saya untuk diskusi lebih lanjut yaa.. InshaAllah artikel selanjutnya akan saya bahas beberapa teknik implementasi di metode collaborative filtering.