Showing posts with label prediksi. Show all posts
Showing posts with label prediksi. Show all posts

Sunday, September 12, 2021

Mengenal Regresi linear dan perhitungannya

Disini kita akan bahas salah satu model statistik yang umum digunakan untuk Machine Learning untuk melakukan prediksi dengan cara supervised learning, yaitu regresi linear. Metode ini melibatkan 2 variabel dimana salah satunya adalah variabel independen (x) dan satu lagi adalah variabel dependen (y)

  • Independen berarti variabel ini sebagai variabel utama yang mungkin akan mempengaruhi nilai variabel kedua (dependen). 
  • Dependen berarti nilai variabel ini akan tergantung dari nilai variabel independennya, jika korelasi tinggi maka dependensi juga tinggi.

Untuk memudahkan pemahaman, kita gunakan data sample berat dan tinggi badan dari 10 orang sebagai berikut ini:

Data Tinggi Badan(cm) : 151,174,138,186,128,136,179,163,152,131
Data Berat Badan (Kg) : 63, 81, 56, 91, 47, 57, 76, 72, 62, 48

Regresi Linear adalah proses mencari garis linear yang menujukkan korelasi antara kedua variabel tersebut, garis linear itu akan didapat dengan sebuah persamaan :

y = ax + b atau y = w1x + w0

dimana: 
a atau w1 adalah slope / gradient / coefficient
b atau w0 adalah intercept / bias

Ciri dari problem regresi ini adalah kasusnya diminta menebak angka. Jenis outputnya bersifat continuous. Contoh lain dari regresi ini misalnya menebak curah hujan, harga rumah, jumlah kendaraan pemudik, dsb.

Perhitungan Manual

Untuk mendapatkan nilai coef(A) dan intercept/bias(B) digunakan rumus:


Gambar diatas menjelaskan detail perhitungan dari rumus tersebut kedalam excel. Dalam mencari nilai coef A dan intercept/bias B di excel digunakan formula pada sheet berikut:

A =((C25*C24)-(C23*C21))/((C25*C22)-(C23*C23))
B =((C21*C22)-(C23*C24))/((C25*C22)-(C23*C23))

Menggunakan Python

Perhitungan di python lebih sederhana, dimana kita bisa menggunakan library sklearn, seperti pada contoh kode dibawah ini:

Nilai coef dan intercept didapatkan dari kode baris ke-19 dan-20 diatas, sehingga akan didapatkan persamaan linear sebagai berikut:

y = 0.674 * x + (-38.455)

Sedangkan hasil dari plot data seperti pada gambar dibawah, dimana garis merah merupakan nilai prediksi dari model linear regresi dan titik-titik biru adalah 10 data training yang digunakan.

Regresi Linear Berganda

Regresi Linear Berganda adalah model regresi linear dengan melibatkan lebih dari satu variable bebas/independen dan persamaannya adalah

y = a1x1 + a2x2 + .. + anxn + b

Untuk pembahasan prediksi menggunakan regresi liner berganda kali ini akan diambil dari paper yang telah dipublish oleh mas Ervan Triyanto di jurnal Rabit, Juli 2019. Kasus ini adalah prediksi jumlah produksi padi di kabupaten Bantul dengan data yang digunakan dari tahun 2009 sampai dengan 2017. Di penelitian tersebut perhitungan nya diimplementasikan ke dalam aplikasi web menggunana PHP sebagai bahasa pemrogramannya. Di artikel ini akan digunakan python untuk perhitungannya dengan alasan kemudahannya.

Downlod pada link ini untuk mendapatkan artikelnya.  

Terdapat 1 variabel dependen yaitu jumlah produksi padi (dalam ton), sedangkan terdapat 3 variabel independen yaitu: curah hujan, luas lahan dan tingkat serangan hama. 

Berikut contoh code di Python untuk menghitung kasus produksi padi diatas:

Dari data diatas, didapatkan persamaan untuk prediksi sebagai berikut:

y = 5.929528x1 + 118.27991767x2 -175.71483753x3 + 8306.792151921123
dimana: luas lahan(x1), curah hujan(x2) dan hama(x3)

Evaluasi

Evaluasi untuk model linear regresi dapat dilakukan dengan beberapa metrik evaluasi seperti: MAE (Mean Absolute Error), MSE (Mean Squared Error) atau RMSE (Root Mean Squared Erorr).

RMSE merupakan salah satu cara untuk mengevaluasi model regresi linear dengan mengukur tingkat akurasi hasil perkiraan suatu model. RMSE dihitung dengan mengkuadratkan error (prediksi – observasi) dibagi dengan jumlah data (rata-rata), lalu diakarkan. RMSE tidak memiliki persamaan:

Pada kode python diatas, evaluasi model dituliskan pada baris kode ke-50 dengan menggunakan library metrics dari sklearn dan didapatkan score RMSE yaitu: 3.5045

Kesimpulan

Meskipun Linear regresi mudah diimplementasikan untuk melakukan prediksi pada data yang bersifat continuous, tetapi terdapat juga kekurangannya yaitu mudah terjadi overfitting dan sulit dilakukan prediksi jika relasi antara variabel dipenden dan independen tidak linear atau korelasi sangat rendah.

Jika membutuhkan dataset tersebut bisa tulis email pada komentar ya.. Bisa anda gunakan untuk penelitian dengan metode machine learning lainya dan silahkan dibandingkan nilai errornya dengan penelitian ini.

Referensi

  1. Jimy, Regresi Linier dengan R dan Python, https://medium.com/@jrendz/regresi-linier-dengan-r-dan-python-ebb80662c6da
  2. Jasme Moody,What does RMSE really mean?, https://towardsdatascience.com/what-does-rmse-really-mean-806b65f2e48e
  3. Triyanto, E., Sismoro, H., & Laksito, A. (2019). Implementasi Algoritma Regresi Linear Berganda untuk Memprediksi Produksi Padi di Kabupaten Bantul. Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, 4(2), 73-86. https://doi.org/10.36341/rabit.v4i2.666